Improvement of Smart Grid Stability Based on Artificial Intelligence with Fusion Methods

Author:

Alaerjan Alaa1ORCID,Jabeur Randa1ORCID,Ben Chikha Haithem2ORCID,Karray Mohamed3ORCID,Ksantini Mohamed4ORCID

Affiliation:

1. Department of Computer Science, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Saudi Arabia

2. Department of Computer Engineering and Networks, College of Computer and Information Sciences, Jouf University, Sakaka 72341, Saudi Arabia

3. ESME, ESME Research Laboratory, 94200 Ivry sur Seine, France

4. Control and Energies Management Laboratory (CEM-Lab), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia

Abstract

It is crucial to evaluate and anticipate stability under various conditions, as the ability to stabilize a smart grid (SG) is one of its key features for assessing the effectiveness of its design. Intelligent approaches to stability forecasting are necessary to mitigate inadvertent instability in SG design. This is particularly crucial with the expansion of residential and commercial infrastructures, along with the growing integration of renewable energies into these grids. Predicting the stability of SGs is currently a major challenge. The concept of an SG encompasses a broad range of emerging technologies in which artificial intelligence (AI) plays a crucial role and is increasingly being utilized in light of the limitations of conventional methods. It empowers informed decision-making and adaptable responses to fluctuations in customer energy needs, unexpected power outages, rapid changes in renewable energy generation, or any unforeseen crises within an SG system. In this paper, we propose a symmetric approach to enhance SG stability by integrating various machine learning (ML) and deep learning (DL) algorithms, where symmetry is observed in the balanced application of these diverse computational techniques to predict and ensure the grid’s stability. These algorithms utilized a dataset containing the simulation results of the SG stability. The learning phase of these algorithms is based on imprecise and unreliable data. To overcome this limitation, the fusion of classifiers can be a powerful approach to modeling inaccurate and uncertain data, providing more robust and reliable predictions than individual classifiers. Voting and Dempster–Shafer (DS) methods, two commonly used techniques in ensemble learning, were employed and compared. The results show that the use of the fusion of distinct classifiers with voting theory achieves an accuracy of 99.8% and outperforms several other methods including the DS method.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3