Improved Weed Detection in Cotton Fields Using Enhanced YOLOv8s with Modified Feature Extraction Modules

Author:

Ren Doudou1,Yang Wenzhong12,Lu Zhifeng3,Chen Danny1,Shi Houwang1

Affiliation:

1. School of Information Science and Engineering, Xinjiang University, Urumqi 830017, China

2. Xinjiang Key Laboratory of Multilingual Information Technology, Xinjiang University, Urumqi 830017, China

3. School of Information Science and Technology, Xinjiang Teacher’s College, Urumqi 830043, China

Abstract

Weed detection plays a crucial role in enhancing cotton agricultural productivity. However, the detection process is subject to challenges such as target scale diversity and loss of leaf symmetry due to leaf shading. Hence, this research presents an enhanced model, EY8-MFEM, for detecting weeds in cotton fields. Firstly, the ALGA module is proposed, which combines the local and global information of feature maps through weighting operations to better focus on the spatial information of feature maps. Following this, the C2F-ALGA module was developed to augment the feature extraction capability of the underlying backbone network. Secondly, the MDPM module is proposed to generate attention matrices by capturing the horizontal and vertical information of feature maps, reducing duplicate information in the feature maps. Finally, we will replace the upsampling module of YOLOv8 with the CARAFE module to provide better upsampling performance. Extensive experiments on two publicly available datasets showed that the F1, mAP50 and mAP75 metrics improved by 1.2%, 5.1%, 2.9% and 3.8%, 1.3%, 2.2%, respectively, compared to the baseline model. This study showcases the algorithm’s potential for practical applications in weed detection within cotton fields, promoting the significant development of artificial intelligence in the field of agriculture.

Funder

National Key R & D Program of China

Key Research and Development Program of the Autonomous Region

National Natural Science Foundation of China

Tianshan Science and Technology Innovation Leading talent Project of the Autonomous Region

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3