Transfer Elastic Net for Developing Epigenetic Clocks for the Japanese Population

Author:

Tomo Yui1ORCID,Nakaki Ryo2

Affiliation:

1. Department of Health Policy and Management, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan

2. Rhelixa, Inc., Chuo-ku, Tokyo 104-0042, Japan

Abstract

The epigenetic clock evaluates human biological age based on DNA methylation patterns. It takes the form of a regression model where the methylation ratio at CpG sites serves as the predictor and age as the response variable. Due to the large number of CpG sites and their correlation, Elastic Net is commonly used to train the models. However, existing standard epigenetic clocks, trained on multiracial data, may exhibit biases due to genetic and environmental differences among specific racial groups. Developing epigenetic clocks suitable for a specific single-race population requires collecting and analyzing hundreds or thousands of samples, which costs a lot of time and money. Therefore, an efficient method to construct accurate epigenetic clocks with smaller sample sizes is needed. We propose Transfer Elastic Net, a transfer learning approach that trains a model in the target population using the information of parameters estimated by the Elastic Net in a source population. Using this method, we constructed Horvath’s, Hannum’s, and Levine’s types of epigenetic clocks from blood samples of 143 Japanese subjects. The DNA methylation data were transformed through principal component analysis to obtain more reliable clocks. The developed clocks demonstrated the smallest prediction errors compared to both the original clocks and those trained with the Elastic Net on the same Japanese data. Transfer Elastic Net can also be applied to develop epigenetic clocks for other specific populations, and is expected to be applied in various fields.

Funder

Rhelixa, Inc.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3