Optimizing Electric Vehicle (EV) Charging with Integrated Renewable Energy Sources: A Cloud-Based Forecasting Approach for Eco-Sustainability

Author:

Aldossary Mohammad1ORCID,Alharbi Hatem A.2ORCID,Ayub Nasir3ORCID

Affiliation:

1. Department of Computer Engineering and Information, College of Engineering, Prince Sattam bin Abdulaziz University, Wadi Al-Dawasir 11991, Saudi Arabia

2. Department of Computer Engineering, College of Computer Science and Engineering, Taibah University, Madinah 42353, Saudi Arabia

3. Department of Creative Technologies, Air University Islamabad, Islamabad 44000, Pakistan

Abstract

As electric vehicles (EVs) are becoming more common and the need for sustainable energy practices is growing, better management of EV charging station loads is a necessity. The simple act of folding renewable power from solar or wind in an EV charging system presents a huge opportunity to make them even greener as well as improve grid resiliency. This paper proposes an innovative EV charging station energy consumption forecasting approach by incorporating integrated renewable energy data. The optimization is achieved through the application of SARLDNet, which enhances predictive accuracy and reduces forecast errors, thereby allowing for more efficient energy allocation and load management in EV charging stations. The technique leverages comprehensive solar and wind energy statistics alongside detailed EV charging station utilization data collected over 3.5 years from various locations across California. To ensure data integrity, missing data were meticulously addressed, and data quality was enhanced. The Boruta approach was employed for feature selection, identifying critical predictors, and improving the dataset through feature engineering to elucidate energy consumption trends. Empirical mode decomposition (EMD) signal decomposition extracts intrinsic mode functions, revealing temporal patterns and significantly boosting forecasting accuracy. This study introduces a novel stem-auxiliary-reduction-LSTM-dense network (SARLDNet) architecture tailored for robust regression analysis. This architecture combines regularization, dense output layers, LSTM-based temporal context learning, dimensionality reduction, and early feature extraction to mitigate overfitting. The performance of SARLDNet is benchmarked against established models including LSTM, XGBoost, and ARIMA, demonstrating superior accuracy with a mean absolute percentage error (MAPE) of 7.2%, Root Mean Square Error (RMSE) of 22.3 kWh, and R2 Score of 0.87. This validation of SARLDNet’s potential for real-world applications, with its enhanced predictive accuracy and reduced error rates across various EV charging stations, is a reason for optimism in the field of renewable energy and EV infrastructure planning. This study also emphasizes the role of cloud infrastructure in enabling real-time forecasting and decision support. By facilitating scalable and efficient data processing, the insights generated support informed energy management and infrastructure planning decisions under dynamic conditions, empowering the audience to adopt sustainable energy practices.

Funder

Prince Sattam Bin Abdulaziz University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3