Enhancing Signature Verification Using Triplet Siamese Similarity Networks in Digital Documents

Author:

Tehsin Sara1,Hassan Ali1ORCID,Riaz Farhan12,Nasir Inzamam Mashood3,Fitriyani Norma Latif4ORCID,Syafrudin Muhammad4ORCID

Affiliation:

1. Department of Computer and Software Engineering, National University of Sciences and Technology, Islamabad 44080, Pakistan

2. School of Computer Science, University of Lincoln, Lincoln LN6 7DQ, UK

3. Department of Computer Science, HITEC University Taxila, Taxila 47040, Pakistan

4. Department of Artificial Intelligence and Data Science, Sejong University, Seoul 05006, Republic of Korea

Abstract

In contexts requiring user authentication, such as financial, legal, and administrative systems, signature verification emerges as a pivotal biometric method. Specifically, handwritten signature verification stands out prominently for document authentication. Despite the effectiveness of triplet loss similarity networks in extracting and comparing signatures with forged samples, conventional deep learning models often inadequately capture individual writing styles, resulting in suboptimal performance. Addressing this limitation, our study employs a triplet loss Siamese similarity network for offline signature verification, irrespective of the author. Through experimentation on five publicly available signature datasets—4NSigComp2012, SigComp2011, 4NSigComp2010, and BHsig260—various distance measure techniques alongside the triplet Siamese Similarity Network (tSSN) were evaluated. Our findings underscore the superiority of the tSSN approach, particularly when coupled with the Manhattan distance measure, in achieving enhanced verification accuracy, thereby demonstrating its efficacy in scenarios characterized by close signature similarity.

Publisher

MDPI AG

Reference34 articles.

1. Writer Identification Using GMM Supervectors and Exemplar-SVMs;Christlein;Pattern Recognit.,2017

2. Combining graph edit distance and triplet networks for offline signature verification;Maergner;Pattern Recognit. Lett.,2019

3. ENGA: Elastic Net-Based Genetic Algorithm for human action recognition;Nasir;Expert Syst. Appl.,2023

4. A Data-Characteristic-Aware Latent Factor Model for Web Services QoS Prediction;Wu;IEEE Trans. Knowl. Data Eng.,2020

5. Efficient and High-quality Recommendations via Momentum-incorporated Parallel Stochastic Gradient Descent-Based Learning;Luo;IEEE/CAA J. Autom. Sin.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3