Automatic PRPD Image Recognition of Multiple Simultaneous Partial Discharge Sources in On-Line Hydro-Generator Stator Bars

Author:

Araújo Ramon C. F.ORCID,de Oliveira Rodrigo M. S.ORCID,Barros Fabrício J. B.ORCID

Abstract

In this study, a methodology for automatic recognition of multiple simultaneous types of partial discharges (PDs) in hydro-generator stator windings was proposed. All the seven PD sources typical in rotating machines were considered, and up to three simultaneous sources could be identified. The functionality of identifying samples with no valid PDs was also incorporated using a new technique. The data set was composed of phase-resolved partial discharge (PRPD) patterns obtained from on-line measurements of hydro-generators. From an input PRPD, noise and interference were removed with an improved version of an image-based denoising algorithm previously proposed by the authors. Then, a novel image-based algorithm that separates partially superposed PD clouds was proposed, by decomposing the input pattern into two sub-PRPDs containing discharges of different natures. From the sub-PRPDs, one extracts features quantifying the PD distribution over amplitudes and the contour of PD clouds. Those features are fed as inputs to several artificial neural networks (ANNs), each of which solves a part of the classification problem and acts as a block of a larger system. Once trained, ANNs work collaboratively to identify an unknown sample. Good results were obtained, with overall accuracies ranging from 88% to 94.8% for all the considered PD sources.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3