Affiliation:
1. Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Abstract
Quantum dots (QDs) are emerging as promising candidates for innovative memristive materials, owing to their distinct surface, quantum size, and edge effects. Recent research has focused on tailoring QDs with specific organic molecules to fine-tune charge transfer states between the host and grafted species, as well as enhancing their dispersibility and processability. Violet phosphorus (VP), a newly discovered two-dimensional phosphorus allotrope, offers excellent carrier dynamics, predictable modifiability, and superior oxidation resistance, making it a promising contender in this domain. In this study, we synthesized a rich azobenzene-containing star-shaped polymer diazonium salt (AzoSPD) to functionalize violet phosphorus quantum dots (VPQDs), with the dual objectives of enhancing organic dispersibility and introducing photo-switching capabilities. The synthesized AzoSPD–VPQDs exhibit intramolecular charge transfer characteristics under electrical stimuli of ambient conditions, displaying significant non-volatile rewriteable memory properties and a substantial switching ratio exceeding 2 × 103. Furthermore, the high resistance state (HRS) current can be enhanced by nearly 40 times under 465 nm illumination, enabling optoelectronic information sensing and storage within a single device. This work not only provides insights into enhancing the optoelectronic properties of QDs through functional organic molecular modification but also represents a pioneering exploration of the potential applications of VPQDs in novel memristors.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献