Influence of Light Irradiation on Nitrification in Microalgal–Bacterial Systems for Treating Wastewater

Author:

Lu Shimin12ORCID,Li Yayuan13,Liu Xingguo12,Cheng Guofeng12,Yuan Zehui13,Wu Fan12

Affiliation:

1. Fishery Machinery and Instrument Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200092, China

2. Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China

3. College of Fisheries and Life, Shanghai Ocean University, Shanghai 201306, China

Abstract

The use of bacterial and microalgal consortia to remove nitrogen from wastewater has garnered attention as a potential alternative to conventional systems. This approach not only reduces energy consumption but also aids in nutrient recovery. Light is essential for algae photosynthesis; however, nitrifying bacteria are also influenced by light radiation. This mini-review summarizes the current knowledge concerning photoinhibition, the light stimulation of ammonia-oxidizing bacteria (AOB), resistance to light radiation, the implementation of microalgal–bacterial systems, and the possible mechanisms involved. Nitrosomonadaceae AOB and Nitrospiraceae nitrite-oxidizing bacteria (NOB) often coexist in a microalgal–bacterial system. Studies have suggested that AOB can tolerate light radiation at 200 μmol m−2·s−1 in microalgal–bacterial systems, whereas NOB are almost completely suppressed, which can result in partial nitrification in the bioreactor. An appropriate light level can stimulate AOB growth in microalgal–bacterial granular reactors and may improve algae metabolic activity. Granular sludges or artificial “light-shielding hydrogel” could effectively protect nitrifying bacteria from light intensities up to 1600 μmol m−2·s−1 in wastewater treatment reactors. Microalgal–bacterial systems along with the associated “algal shading effect” have been widely used in pond aquaculture. This approach minimizes the need for costly mechanical aeration through photo-oxygenation and facilitates nutrient recovery by filter-feeding fish.

Funder

Central Public-Interest Scientific Institution Basal Research Fund, CAFS

CARS

Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3