Endothelial and Hemodynamic Function in a Large Animal Model in Relation to Different Extracorporeal Membrane Oxygenation Cannulation Strategies and Intra-Aortic Balloon Pumping

Author:

Gerfer Stephen1ORCID,Djordjevic Ilija1ORCID,Maier Johanna2,Movahed Ana1,Elskamp Mara1,Kuhn Elmar1,Liakopoulos Oliver3,Wahlers Thorsten1,Deppe Antje C.1

Affiliation:

1. Department of Cardiothoracic Surgery, Heart Center, University Hospital of Cologne, University of Cologne, 50924 Cologne, Germany

2. Division of Thoracic and Cardiovascular Surgery, HELIOS Klinikum Siegburg, 53721 Siegburg, Germany

3. Department of Cardiac Surgery, Kerckhoff-Clinic Bad Nauheim, Campus Kerckhoff, University of Giessen, 61231 Bad Nauheim, Germany

Abstract

Background: The use of simultaneous veno-arterial extracorporeal membrane oxygenation (ECMO) with or without an Intra-Aortic Balloon Pump (IABP) is a widely used tool for mechanical hemodynamic support. Endothelial function, especially in relation to different cannulation techniques, is rarely investigated in the setting of extracorporeal life support (ECLS). In this study, we analyzed endothelial function in relation to hemodynamic and laboratory parameters for central and peripheral ECMO, with or without concomitant IABP support in a large animal model to gain a better understanding of the underlying basic mechanisms. Methods: In this large animal model, healthy female pigs with preserved ejection fraction were divided into the following groups related to cannulation strategy for ECMO and simultaneous IBAP support: control (no ECMO, no IABP), peripheral ECMO (pECMO), central ECMO (cECMO), pECMO and IABP or cECMO and IABP. During the experimental setting, the blood flow in the ascending aorta, left coronary artery and arteria carotis was measured. Afterwards, endothelial function was investigated after harvesting the right coronary artery, arteria carotis and renal artery. In addition, laboratory markers, such as creatine kinase (CK), creatine kinase muscle–brain (CK-MB), troponin, creatinine and endothelin were analyzed. Results: The blood flow in the ascending aorta and the left coronary artery was significantly lower in all discussed experimental settings compared to the control group. Of note, the cECMO cannulation strategy generated favorable hemodynamic circumstances with higher blood flow in the coronary arteries than pECMO regardless of flow circumstances in the ascending aorta. The concomitant usage of IABP did not result in an improvement of the coronary blood flow, but partially showed a negative impact on the endothelial function of coronary arteries in comparison to the control. These findings correlate to higher CK/CK-MB levels in the setting of cECMO + IABP and pECMO + IABP. Conclusions: The usage of mechanical circulatory support with concomitant ECMO and IABP in a large animal model might have an influence on the endothelial function of coronary arteries while not improving the coronary artery perfusion in healthy hearts with preserved ejection.

Funder

Koeln Fortune Programm

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3