Abstract
Predicting the bulk-average velocity (UB) in open channels with rigid vegetation is complicated due to the non-linear nature of the parameters. Despite their higher accuracy, existing regression models fail to highlight the feature importance or causality of the respective predictions. Therefore, we propose a method to predict UB and the friction factor in the surface layer (fS) using tree-based machine learning (ML) models (decision tree, extra tree, and XGBoost). Further, Shapley Additive exPlanation (SHAP) was used to interpret the ML predictions. The comparison emphasized that the XGBoost model is superior in predicting UB (R = 0.984) and fS (R = 0.92) relative to the existing regression models. SHAP revealed the underlying reasoning behind predictions, the dependence of predictions, and feature importance. Interestingly, SHAP adheres to what is generally observed in complex flow behavior, thus, improving trust in predictions.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献