Predicting Subclinical Ketosis in Dairy Cows Using Machine Learning Techniques

Author:

Satoła Alicja,Bauer Edyta Agnieszka

Abstract

The diagnosis of subclinical ketosis in dairy cows based on blood ketone bodies is a challenging and costly procedure. Scientists are searching for tools based on results of milk performance assessment that would allow monitoring the risk of subclinical ketosis. The objective of the study was (1) to design a scoring system that would allow choosing the best machine learning models for the identification of cows-at-risk of subclinical ketosis, (2) to select the best performing models, and (3) to validate them using a testing dataset containing unseen data. The scoring system was developed using two machine learning modeling pipelines, one for regression and one for classification. As part of the system, different feature selections, outlier detection, data scaling and oversampling methods were used. Various linear and non-linear models were fit using training datasets and evaluated on holdout, testing the datasets. For the assessment of suitability of individual models for predicting subclinical ketosis, three β-hydroxybutyrate concentration in blood (bBHB) thresholds were defined: 1.0, 1.2 and 1.4 mmol/L. Considering the thresholds of 1.2 and 1.4, the logistic regression model was found to be the best fitted model, which included independent variables such as fat-to-protein ratio, acetone and β-hydroxybutyrate concentrations in milk, lactose percentage, lactation number and days in milk. In the cross-validation, this model showed an average sensitivity of 0.74 or 0.75 and specificity of 0.76 or 0.78, at the pre-defined bBHB threshold 1.2 or 1.4 mmol/L, respectively. The values of these metrics were also similar in the external validation on the testing dataset (0.72 or 0.74 for sensitivity and 0.80 or 0.81 for specificity). For the bBHB threshold at 1.0 mmol/L, the best classification model was the model based on the SVC (Support Vector Classification) machine learning method, for which the sensitivity in the cross-validation was 0.74 and the specificity was 0.73. These metrics had lower values for the testing dataset (0.57 and 0.72 respectively). Regression models were characterized by poor fitness to data (R2 < 0.4). The study results suggest that the prediction of subclinical ketosis based on data from test-day records using classification methods and machine learning algorithms can be a useful tool for monitoring the incidence of this metabolic disorder in dairy cattle herds.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3