Evaluation of the Fatigue Behaviour and Failure Mechanisms of 52100 Steel Coated with WIP-C1 (Ni/CrC) by Cold Spray

Author:

Goanta Viorel,Munteanu CorneliuORCID,Müftü Sinan,Istrate BogdanORCID,Schwartz Patricia,Boese Samuel,Ferguson Gehn,Morăraș Ciprian Ionut

Abstract

Cold spray technique has been major improved in the last decades, for studying new properties for metals and alloys of aluminum, copper, nickel, and titanium, as well as steels, stainless steel and other types of alloys. Cold sprayed Ni/CrC coatings have the potential to provide a barrier as well as improved protection to steels. Fatigue characteristics of 52100 steel coated with Ni/Chrome-Carbide (Ni/CrC) powder mixture by using cold gas dynamic spray are investigated. Fatigue samples were subjected to symmetrically alternating, axially applied cyclic fatigue loading until failure. The test was stopped if a sample survived more than 5 × 106 cycles at the applied stress. Fracture surfaces for each sample were examined to investigate the behaviour of the coating both at high stress levels and at a high number of stress cycles. Scanning electron microscopy was used to assess the damage in the interface of the two materials. Good fatigue behaviour of the coating material was observed, especially at low stresses and a high number of cycles. Details of the crack initiation region, the stable crack propagation region and the sudden crack expansion region are identified for each sample. In most of the samples, the initiation of the crack occurred on the surface of the base material and propagated into the coating material. The possible effects of coatings on the initial deterioration of the base material and the reduction of the lifespan of the coated system were also investigated. The aim of the paper was to study the interface between the base material and the coating material at the fatigue analysis for different stresses, highlighting the appearance of cracks and the number of breaking cycles required for each sample.

Funder

Army Research Laboratories - ”Program in Materials, Additive and Manufacturing, and Multiscale materials Engineering”

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3