Numerical Study on the Heating Effect of a Spring-Loaded Actuator—Part Ⅰ: Temperature and Humidity Distribution Characteristics

Author:

Xi Lei1ORCID,Zhao Zhen1ORCID,Ruan Qicheng1,Yang Zhengheng1,Xu Liang1,Gao Jianmin1,Li Yunlong1

Affiliation:

1. State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Inappropriate distributions of temperature and humidity will cause the failure of the spring-loaded actuators. Therefore, it is essential to understand the temperature and humidity distribution characteristics in typical spring-loaded actuators, to guarantee the safe operation of the spring-loaded actuators. In this work, a numerical simulation study on the temperature and humidity distribution characteristics in a spring-loaded actuator was conducted. The influence laws of ambient temperature, heater power, and heater size on the temperature and humidity distributions inside the spring-loaded actuator were analyzed. The practical empirical correlations for the spring-loaded actuators were fitted. The results show that the air temperature around and directly above the heater is the highest and the corresponding relative humidity is the lowest. Then, the air temperature gradually decreases, and the relative humidity increases with the lateral flow of air. When the ambient temperature increases from 233.15 K (−40 °C) to 313.15 K (40 °C), the minimum temperature inside the actuator is increased by 34%, the maximum humidity first increases and then decreases, and the maximum temperature on the heater surface is increased by 30%. When the heating power increases from 10 W to 150 W at ambient temperatures of 273.15 K and 298.15 K, the minimum temperature inside the actuator is increased by 3.40% and 3.61%, the maximum humidity is decreased by 51.97% and 58.63%, and the maximum temperature on the heater surface is increased by 30.33% and 33.25%, respectively. The influence of heater length, width, and height on the minimum temperature and maximum relative humidity inside the spring-loaded actuator is relatively small. Within the study range, the increase in heater length, width, and height makes the maximum temperature on the heater surface decrease by 9.15%, 7.59%, 4.63% at ambient temperatures of 273.15 K, and 10.74%, 9.01%, 4.73% at ambient temperature of 298.15 K, respectively. The results may provide a reference for predicting temperature and humidity distributions inside general spring-loaded actuators and provide a calculation basis for the design of their heaters.

Funder

Natural Science Basic Research Plan in Shaanxi Province of China

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3