Examining the Controls on the Spatial Distribution of Landslides Triggered by the 2008 Wenchuan Ms 8.0 Earthquake, China, Using Methods of Spatial Point Pattern Analysis

Author:

Bai Guangshun12ORCID,Yang Xuemei3,Bai Guangxin4,Kong Zhigang12,Zhu Jieyong12,Zhang Shitao12

Affiliation:

1. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China

2. Key Laboratory of Geohazard Forecast and Geoecological Restoration in Plateau Mountainous Area, Ministry of Natural Resources of China and Yunnan Province, Kunming 650093, China

3. Yunnan Gaozheng Geo-Exploration Co., Ltd., Kunming 650041, China

4. Qingdao Hongqiao Construction Co., Ltd., Qingdao 266400, China

Abstract

Landslide risk management contributes to the sustainable development of the region. Understanding the spatial controls on the distribution of landslides triggered by earthquakes (EqTLs) is difficult in terms of the prediction and risk assessment of EqTLs. In this study, landslides are regarded as a spatial point pattern to test the controls on the spatial distribution of landslides and model the landslide density prediction. Taking more than 190,000 landslides triggered by the 2008 Wenchuan Ms 8.0 earthquake (WcEqTLs) as the research object, the relative density estimation, Kolmogorov–Smirnov testing based on cumulative distribution, receiver operating characteristic curve (ROC) analysis, and Poisson density modeling are comprehensively applied to quantitatively determine and discuss the different control effects of seven factors representing earthquakes, geology, and topography. The distance to the surface ruptures (dSR) and the distance to the epicenter (dEp) show significant and strong control effects, which are far stronger than the other five factors. Using only the dSR, dEp, engineering geological rock group (Eg), and the range, a particularly effective Poisson model of landslide density is constructed, whose area under the ROC (AUC) reaches 0.9244 and whose very high-density (VHD) zones can contain 50% of landslides and only comprise 3.9% of the study areas. This research not only deepens our understanding of the spatial distribution of WcEqTLs but also provides new technical methods for such investigation and analysis.

Funder

science and technology development project of Power China, Sinohydro Foundation Engineering Co., Ltd.

scientific and technological development project of Southwest Pipeline Co., Ltd.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3