An Intelligent Cloud Service Composition Optimization Using Spider Monkey and Multistage Forward Search Algorithms

Author:

Tarawneh Hassan,Alhadid IssamORCID,Khwaldeh Sufian,Afaneh Suha

Abstract

Web service composition allows developers to create and deploy applications that take advantage of the capabilities of service-oriented computing. Such applications provide the developers with reusability opportunities as well as seamless access to a wide range of services that provide simple and complex tasks to meet the clients’ requests in accordance with the service-level agreement (SLA) requirements. Web service composition issues have been addressed as a significant area of research to select the right web services that provide the expected quality of service (QoS) and attain the clients’ SLA. The proposed model enhances the processes of web service selection and composition by minimizing the number of integrated Web Services, using the Multistage Forward Search (MSF). In addition, the proposed model uses the Spider Monkey Optimization (SMO) algorithm, which improves the services provided with regards to fundamentals of service composition methods symmetry and variations. It achieves that by minimizing the response time of the service compositions by employing the Load Balancer to distribute the workload. It finds the right balance between the Virtual Machines (VM) resources, processing capacity, and the services composition capabilities. Furthermore, it enhances the resource utilization of Web Services and optimizes the resources’ reusability effectively and efficiently. The experimental results will be compared with the composition results of the Smart Multistage Forward Search (SMFS) technique to prove the superiority, robustness, and effectiveness of the proposed model. The experimental results show that the proposed SMO model decreases the service composition construction time by 40.4%, compared to the composition time required by the SMFS technique. The experimental results also show that SMO increases the number of integrated ted web services in the service composition by 11.7%, in comparison with the results of the SMFS technique. In addition, the dynamic behavior of the SMO improves the proposed model’s throughput where the average number of the requests that the service compositions processed successfully increased by 1.25% compared to the throughput of the SMFS technique. Furthermore, the proposed model decreases the service compositions’ response time by 0.25 s, 0.69 s, and 5.35 s for the Excellent, Good, and Poor classes respectively compared to the results of the SMFS Service composition response times related to the same classes.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3