Abstract
Until the 1990s, the notion of brain lateralization—the division of labor between the two hemispheres—and its more visible behavioral manifestation, handedness, remained fiercely defined as a human specific trait. Since then, many studies have evidenced lateralized functions in a wide range of species, including both vertebrates and invertebrates. In this review, we highlight the great contribution of comparative research to the understanding of human handedness’ evolutionary and developmental pathways, by distinguishing animal forelimb asymmetries for functionally different actions—i.e., potentially depending on different hemispheric specializations. Firstly, lateralization for the manipulation of inanimate objects has been associated with genetic and ontogenetic factors, with specific brain regions’ activity, and with morphological limb specializations. These could have emerged under selective pressures notably related to the animal locomotion and social styles. Secondly, lateralization for actions directed to living targets (to self or conspecifics) seems to be in relationship with the brain lateralization for emotion processing. Thirdly, findings on primates’ hand preferences for communicative gestures accounts for a link between gestural laterality and a left-hemispheric specialization for intentional communication and language. Throughout this review, we highlight the value of functional neuroimaging and developmental approaches to shed light on the mechanisms underlying human handedness.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献