Abstract
Silicon nanowires are appealing structures to enhance the capacity of anodes in lithium-ion batteries. However, to attain industrial relevance, their synthesis requires a reduced cost. An important part of the cost is devoted to the silicon growth catalyst, usually gold. Here, we replace gold with tin, introduced as low-cost tin oxide nanoparticles, to produce a graphite–silicon nanowire composite as a long-standing anode active material. It is equally important to control the silicon size, as this determines the rate of decay of the anode performance. In this work, we demonstrate how to control the silicon nanowire diameter from 10 to 40 nm by optimizing growth parameters such as the tin loading and the atmosphere in the growth reactor. The best composites, with a rich content of Si close to 30% wt., show a remarkably high initial Coulombic efficiency of 82% for SiNWs 37 nm in diameter.
Funder
H2020 European funding Flagship Graphene Core 2
Subject
General Materials Science,General Chemical Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献