Ranking Crossing Scenario Complexity for eHMIs Testing: A Virtual Reality Study

Author:

Fratini Elena1ORCID,Welsh Ruth1ORCID,Thomas Pete1

Affiliation:

1. School of Design and Creative Arts, LDS, Loughborough University, Loughborough LE11 3TU, UK

Abstract

External human–machine interfaces (eHMIs) have the potential to benefit AV–pedestrian interactions. The majority of studies investigating eHMIs have used relatively simple traffic environments, i.e., a single pedestrian crossing in front of a single eHMI on a one-lane straight road. While this approach has proved to be efficient in providing an initial understanding of how pedestrians respond to eHMIs, it over-simplifies interactions which will be substantially more complex in real-life circumstances. A process is illustrated in a small-scale study (N = 10) to rank different crossing scenarios by level of complexity. Traffic scenarios were first developed for varying traffic density, visual complexity of the road scene, road geometry, weather and visibility conditions, and presence of distractions. These factors have been previously shown to increase difficulty and riskiness of the crossing task. The scenarios were then tested in a motion-based, virtual reality environment. Pedestrians’ perceived workload and objective crossing behaviour were measured as indirect indicators of the level of complexity of the crossing scenario. Sense of presence and simulator sickness were also recorded as a measure of the ecological validity of the virtual environment. The results indicated that some crossing scenarios were more taxing for pedestrians than others, such as those with road geometries where traffic approached from multiple directions. Further, the presence scores showed that the virtual environments experienced were found to be realistic. This paper concludes by proposing a “complex” environment to test eHMIs under more challenging crossing circumstances.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Computer Science Applications,Human-Computer Interaction,Neuroscience (miscellaneous)

Reference122 articles.

1. European Commission (2020). Ethics of Connected and Automated Vehicles: Recommendations on Road Safety, Privacy, Fairness, Explainability and Responsibility, EU Publications.

2. Distracted Driver Performance to Multiple Alerts in a Multiple-Conflict Scenario;Fitch;Hum. Factors,2014

3. Evaluating the impact of connected and autonomous vehicles on traffic safety;Ye;Phys. A Stat. Mech. Appl.,2019

4. WHO (2018). Global Status Report on Road Safety 2018: Summary, World Health Organization.

5. External HMI for self-driving vehicles: Which information shall be displayed?;Faas;Transp. Res. Part F Traffic Psychol. Behav.,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3