Stand Biomass at Treeline Ecotone in Russian Subarctic Mountains Is Primarily Related to Species Composition but Its Dynamics Driven by Improvement of Climatic Conditions

Author:

Moiseev Pavel A.,Hagedorn FrankORCID,Balakin Dmitry S.,Bubnov Maxim O.,Devi Nadezhda M.ORCID,Kukarskih Vladimir V.,Mazepa Valery S.ORCID,Viyukhin Sergey O.,Viyukhina Arina A.,Grigoriev Andrey A.ORCID

Abstract

Climate change effects are strongest in forest ecosystems at the limit of their distributions. Despite the evidence that treelines have shifted upwards by hundreds of meters, knowledge of the associated changes in the stand biomass is limited. In this study, stand biomass and changes to it during the last centuries were estimated along 20 altitudinal transects reaching from the historical (located in the 1950s–1960s) closed forest line up to the current treelines on mountain slopes of three subarctic regions of Russia (Kola Peninsula, Polar Urals, and Putorana Plateau) along a 2200 km long longitudinal gradient. The estimates were based on allometric measurements of 139 trees of five species (Betula pubescens Ehrh. ssp. tortuosa, Pinus sylvestris L., Picea abies Ledeb. ssp. obovata, Larix sibirica Ledeb., and Larix gmelinii Rupr.), stand structure assessments, and the demographic patterns of 9300 trees. During the 20th century, the growth and establishment of trees at the forest–mountain tundra transition (340–500 m width) increased exponentially. Since 1910 forest expansion and densification led to an accumulation of 621–748 tons of aboveground stand biomass per km of treeline length. The accumulation was two times higher below than above the contemporary closed forest line. Data analysis of weather stations showed that the 20th century’s climate had changed in a similar manner in the three study regions, namely vegetation periods became longer (8–10 days) and warmer (0.6–0.9 °C) and more snow fell in the cold period (+10–30%). Our results indicate that regional patterns in stand biomass at the treeline ecotone are primarily related to tree species composition as determined by macroclimatic conditions (e.g., continentality, sunshine hours), snowpack depth, and growing season duration. However, the stand biomass accumulation was driven by increases of early summer temperatures and early winter precipitation during the last century.

Funder

Russian Scientific Foundation

Publisher

MDPI AG

Subject

Forestry

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3