Deep Learning-Based Design Method for Acoustic Metasurface Dual-Feature Fusion

Author:

Lv Qiang1ORCID,Zhao Huanlong1,Huang Zhen1,Hao Guoqiang1,Chen Wei1

Affiliation:

1. School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China

Abstract

Existing research in metasurface design was based on trial-and-error high-intensity iterations and requires deep acoustic expertise from the researcher, which severely hampered the development of the metasurface field. Using deep learning enabled the fast and accurate design of hypersurfaces. Based on this, in this paper, an integrated learning approach was first utilized to construct a model of the forward mapping relationship between the hypersurface physical structure parameters and the acoustic field, which was intended to be used for data enhancement. Then a dual-feature fusion model (DFCNN) based on a convolutional neural network was proposed, in which the first feature was the high-dimensional nonlinear features extracted using a data-driven approach, and the second feature was the physical feature information of the acoustic field mined using the model. A convolutional neural network was used for feature fusion. A genetic algorithm was used for network parameter optimization. Finally, generalization ability verification was performed to prove the validity of the network model. The results showed that 90% of the integrated learning models had an error of less than 3 dB between the real and predicted sound field data, and 93% of the DFCNN models could achieve an error of less than 5 dB in the local sound field intensity.

Funder

The National Natural Science Foundation of China

the PetroChina Innovation Foundation

the Marine Defense Technology Innovation Center Innovation Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3