In Vivo Investigation of 3D-Printed Calcium Magnesium Phosphate Wedges in Partial Load Defects

Author:

Hemmerlein Elke1ORCID,Vorndran Elke2,Schmitt Anna-Maria2ORCID,Feichtner Franziska1,Waselau Anja-Christina1,Meyer-Lindenberg Andrea1ORCID

Affiliation:

1. Clinic for Small Animal Surgery and Reproduction, Ludwig Maximilians University Munich, 80539 Munich, Germany

2. Department for Functional Materials in Medicine and Dentistry, University of Würzburg, 97070 Würzburg, Germany

Abstract

Bone substitutes are ideally biocompatible, osteoconductive, degradable and defect-specific and provide mechanical stability. Magnesium phosphate cements (MPCs) offer high initial stability and faster degradation compared to the well-researched calcium phosphate cements (CPCs). Calcium magnesium phosphate cements (CMPCs) should combine the properties of both and have so far shown promising results. The present study aimed to investigate and compare the degradation and osseointegration behavior of 3D powder-printed wedges of CMPC and MPC in vivo. The wedges were post-treated with phosphoric acid (CMPC) and diammonium hydrogen phosphate (MPC) and implanted in a partially loaded defect model in the proximal rabbit tibia. The evaluation included clinical, in vivo µ-CT and X-ray examinations, histology, energy dispersive X-ray analysis (EDX) and scanning electron microscopy (SEM) for up to 30 weeks. SEM analysis revealed a zone of unreacted material in the MPC, indicating the need to optimize the manufacturing and post-treatment process. However, all materials showed excellent biocompatibility and mechanical stability. After 24 weeks, they were almost completely degraded. The slower degradation rate of the CMPC corresponded more favorably to the bone growth rate compared to the MPC. Due to the promising results of the CMPC in this study, it should be further investigated, for example in defect models with higher load.

Funder

German Research Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3