Affiliation:
1. Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Kejia Road No. 156, Ganzhou 341000, China
Abstract
With the increasingly complicated sources of lead smelting materials, it is becoming more difficult to optimize process parameters during the bottom-blowing lead oxidation smelting process. Building a bottom-blowing lead smelting thermodynamic model has significant importance for the green production of the lead smelting process. In this study, we built a multi-phase equilibrium thermodynamic model and simulation system for the oxygen-enriched bottom-blowing lead oxidation smelting process using the MetCal software platform (MetCal v7.81) according to the chemical equilibrium constant method. The equilibrium products composition and important technical indicators were calculated under factory operating conditions. Compared with the industrial data, the calculation results demonstrated that the average relative error of the calculation value of the mass fraction in the crude lead, lead-rich slag, and dust was 3.76%. The average relative error of important technical indicators, including dust rate, crude lead yield, lead-rich slag temperature, slag iron–silica ratio (RFe/SiO2), and slag calcium–silica ratio (RCaO/SiO2), was 6.39%. As a result, the developed modeling and simulation system was able to reflect the current state of the oxygen-enriched bottom-blowing lead smelting. It also demonstrated the potential to enhance the smelting process and optimize the process parameters. Therefore, it is expected to provide a useful tool for thermodynamic analysis.
Funder
Natural Science Foundation of Jiangxi Province of China
China Baowu Low Carbon Metallurgy Innovation Foundation
China Postdoctoral Science Foundation
National Nature Science Foundation of China
Training Plan for Academic and Technical Leaders of Major Disciplines in Jiangxi Province
Natural Science Foundation for Distinguished Young Scholars of Jiangxi Province
Postdoctoral program of Jiangxi Province
Jiangxi Province Postdoctoral Daily Funding Project
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献