Mechanical Fatigue Resistance of Piezoelectric PVDF Polymers

Author:

Shin Youn-Hwan,Jung Inki,Park Hyunchul,Pyeon Jung,Son Jeong,Koo Chong,Kim Sangtae,Kang Chong-Yun

Abstract

The fatigue resistance of piezoelectric PVDF has been under question in recent years. While some report that a significant degradation occurs after 106 cycles of repeated voltage input, others report that the reported degradation originates from the degraded metal electrodes instead of the piezoelectric PVDF itself. Here, we report the piezoelectric response and remnant polarization of PVDF during 107 cycles of repeated compression and tension, with silver paste-based electrodes to eliminate any electrode effect. After applying repeated tension and compression of 1.8% for 107 times, we do not observe any notable decrease in the output voltage generated by PVDF layers. The results from tension experiments show stable remnant polarization of 5.5 μC/cm2, however, the remnant polarization measured after repeated compression exhibits a 7% decrease as opposed to the tensed PVDF. These results suggest a possible anisotropic response to stress direction. The phase analyses by Raman spectroscopy reveals no significant change in the phase content, demonstrating the fatigue resistance of PVDF.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3