Effect of Chromatographic Conditions on Supercoiled Plasmid DNA Stability and Bioactivity

Author:

Azevedo G.M.,Valente J.F.A.,Sousa A.,Pedro A.Q.,Pereira P.ORCID,Sousa F.ORCID,Queiroz J.A.ORCID

Abstract

The dysfunction of the tumor suppressor gene TP53 has been associated with the pathogenesis of the majority of the cases of cancer reported to date, leading the cell to acquire different features known as the cancer hallmarks. In normal situations, the protein p53 protects the cells against tumorigenesis. By detecting metabolic stress or DNA damage in response to stress, p53 can lead the cell to senescence, autophagy, cell cycle arrest, DNA repair, and apoptosis. Thus, in the case of p53 mutations, it is reasonable to assume that the reestablishment of its function, may restrain the proliferation of cancer cells. The concept of cancer gene therapy can be based on this assumption, and suitable biotechnological approaches must be explored to assure the preparation of gene-based biopharmaceuticals. Although numerous procedures have already been established to purify supercoiled plasmid DNA (sc pDNA), the therapeutic application is highly dependent on the biopharmaceutical’s activity, which can be affected by the chromatographic conditions used. Thus, the present work aims at comparing quality and in vitro activity of the supercoiled (sc) isoform of the p53 encoding plasmid purified by three different amino acids-based chromatographic strategies, involving histidine–agarose, arginine–macroporous, and histidine–monolith supports. The B-DNA topology was maintained in all purified pDNA samples, but their bioactivity, related to the induction of protein p53 expression and apoptosis in cancer cells, was higher with arginine–macroporous support, followed by histidine–monolith and histidine–agarose. Despite the purity degree of 92% and recovery yield of 43% obtained with arginine–macroporous, the sc pDNA sample led to a higher expression level of the therapeutic p53 protein (58%) and, consequently, induced a slightly higher apoptotic effect (27%) compared with sc pDNA samples obtained with histidine–monolithic support (26%) and histidine–agarose support (24%). This behavior can be related to the mild chromatographic conditions used with arginine–macroporous support, which includes the use of low salt concentrations, at neutral pH and lower temperatures, when compared to the high ionic strength of ammonium sulfate and acidic pH used with histidine-based supports. These results can contribute to field of biopharmaceutical preparation, emphasizing the need to control several experimental conditions while adapting and selecting the methodologies that enable the use of milder conditions as this can have a significant impact on pDNA stability and biological activity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3