Affiliation:
1. Department of Earth Resources Engineering, Kyushu University, Fukuoka 819-0395, Japan
2. Department of Mining, Materials and Petroleum Engineering, Jomo Kenyatta University of Agriculture and Technology, Nairobi P.O. Box 62000-00200, Kenya
Abstract
Accurate estimation of the mean fragment size is crucial for optimizing open-pit mining operations. This study presents an approach that combines clustering, hyperparameter optimization, and data augmentation to enhance prediction accuracy using the Xtreme Gradient Boosting (XGBoost) regression model. A dataset of 110 blasts was divided into 97 blasts for training and testing, whereas a separate set of 13 new, unseen blasts was used to evaluate the robustness and generalization of the model. Hierarchical Agglomerative (HA) and K-means clustering algorithms were used, with HA clustering providing a higher cluster quality. To address class imbalance and improve model generalization, a synthetic minority oversampling technique for regression with Gaussian noise (SMOGN) was employed. Hyperparameter tuning was conducted using HyperOpt by comparing Random Search (RS) with the Advanced Tree-structured Parzen Estimator (ATPE). The combination of ATPE with HA clustering and SMOGN in an expanded search space produced the best results, achieving superior prediction accuracy and reliability. The proposed HAC1-SMOGN model, which integrates HA clustering, ATPE tuning, and SMOGN augmentation, achieved a mean squared error (MSE) of 0.0002 and an R2 of 0.98 on the test set. This study highlights the synergistic benefits of clustering, hyperparameter optimization, and data augmentation in enhancing machine learning models for regression tasks, particularly in scenarios with class imbalance or limited data.
Reference34 articles.
1. Roy, M.P., Paswan, R.K., Sarim, M.D., Kumar, S.U.R.A.J., Jha, R., and Singh, P.K. (2024, June 27). Rock Fragmentation by Blasting—A Review. Available online: https://www.researchgate.net/publication/317031336.
2. Experimental study of surface constraint effect on rock fragmentation by blasting;Zhang;Int. J. Rock Mech. Min. Sci. Géoméch. Abstr.,2020
3. Reduction of Fragment Size from Mining to Mineral Processing: A Review;Zhang;Rock Mech. Rock Eng.,2022
4. Rock Fragmentation Prediction through a New Hybrid Model Based on Imperial Competitive Algorithm and Neural Network;Armaghani;Smart Constr. Res.,2018
5. Dumakor-Dupey, N.K., Arya, S., and Jha, A. (2021). Advances in blast-induced impact prediction—A review of machine learning applications. Minerals, 11.