Creep–Fatigue Life Estimation of Gr.91 Steel and Its Welded Joints

Author:

Nonaka Isamu1

Affiliation:

1. Independent Researcher, 4-22-53 Tatsumidai-Higashi, Ichihara 290-0003, Japan

Abstract

A series of creep–fatigue tests of Gr.91 steel were performed at 600 °C. Fatigue life was reduced by tensile strain holding. The minimum life reduction factor was approximately 0.3. The creep–fatigue life could not be estimated properly via the conventional linear summation rule of the fatigue damage and creep damage. Since this material is considered to have a large creep–fatigue interaction, it was proposed that the creep–fatigue life should be estimated using the improved linear summation rule of the fatigue damage, the creep damage and the creep–fatigue interaction damage. In the future, it will be necessary to clarify the creep–fatigue interaction mechanism and define its damage value. On the other hand, a series of creep–fatigue tests for Gr.91 steel welded joints were also performed in the strain range of 0.5% at 600 °C. Again, the fatigue life was shortened by the tensile strain holding. The minimum fatigue life reduction factor was approximately 0.2. All the test pieces fractured in the fine-grained HAZ of the welded joints. The creep–fatigue life could not be estimated properly using the linear summation rule of the fatigue damage and creep damage in the HAZ. One possible reason was thought to be the effects of the elastic follow-up phenomena peculiar to welded joints. The creep strain of the HAZ might increase due to the transfer of the elastic strain from both the base metal and the weld metal, according to the elastic follow-up phenomena during strain holding. In the future, it will be important to quantitatively estimate the effects of the elastic follow-up phenomena.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3