Affiliation:
1. School of Computer Science, Hunan First Normal University, Changsha 410205, China
2. Hunan Provincial Key Laboratory of Informationization for Basic Education, Hunan First Normal University, Changsha 410205, China
Abstract
Image encryption based on chaotic maps is an important method for ensuring the secure communication of digital multimedia on the Internet. To improve the encryption performance and security of image encryption systems, a new image encryption algorithm is proposed that employs a compound chaotic map and random cyclic shift. First, a new hybrid chaotic system is designed by coupling logistic, ICMIC, Tent, and Chebyshev (HLITC) maps. Comparison tests with previous chaotic maps in terms of chaotic trajectory, Lyapunov exponent, and approximate entropy illustrate that the new hybrid chaotic map has better chaotic performance. Then, the proposed HLITC chaotic system and spiral transformation are used to develop a new chaotic image encryption scheme using the double permutation strategy. The new HLITC chaotic system is used to generate key sequences used in the image scrambling and diffusion stages. The spiral transformation controlled by the chaotic sequence is used to scramble the pixels of the plaintext image, while the XOR operation based on a chaotic map is used for pixel diffusion. Extensive experiments on statistical analysis, key sensitivity, and key space analysis were conducted. Experimental results show that the proposed encryption scheme has good robustness against brute-force attacks, statistical attacks, and differential attacks and is more effective than many existing chaotic image encryption algorithms.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Changsha
Social Science Foundation of Hunan Province
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献