Enhancement of Solar Cell Performance of Electrodeposited Ti/n-Cu2O/p-Cu2O/Au Homojunction Solar Cells by Interface and Surface Modification

Author:

Jayathilaka CharithORCID,Kumara Loku Singgappulige RosanthaORCID,Ohara Koji,Song Chulho,Kohara ShinjiORCID,Sakata OsamiORCID,Siripala Withana,Jayanetti Sumedha

Abstract

Cuprous oxide (Cu2O) homojunction thin films on Ti substrates were fabricated by an electrochemical deposition in which a p-Cu2O layer was deposited on an n-Cu2O layer by carefully controlled bath conditions. It was found that the open-circuit voltage of the homojunction solar cell was significantly influenced by the pH of the lactate bath. The variation of the pH was used to achieve the best possible crystal orientation for homojunctions. The crystallinity and morphology of the products were characterized by X-ray diffraction (XRD), high-energy x-ray diffraction (HEXRD), and scanning electron microscopy (SEM). The current density voltage (J-V) analysis showed that the sulfur treatment and annealing enhanced the photocurrent by ten-fold compared to the untreated and unannealed homojunction solar cell. X-ray photoelectron spectroscopy (XPS) studies confirmed that the sulfur treatment eliminated the surface CuO and formed a thin layer of CuS, which was very useful to make the front Ohmic contact. Transient measurements confirmed that the p-type Cu2O layer, which was subjected to sulfur treatment, significantly reduced the recombination, thus enhancing the efficiency of the solar cell. The best sulfur treated annealed Ti/n-Cu2O/p-Cu2O/Au solar cell produced an energy conversion efficiency of 2.64% with an open-circuit voltage of 490 mV and a short circuit current density of 12.8 mA cm−2 under AM 1.5 illumination.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3