Author:
Lelovic Selimir,Vasovic Dejan
Abstract
Cohesion is defined as the shear strength of material when compressive stress is zero. This article presents a new method for the experimental determination of cohesion at pre-set angles of shear deformation. Specially designed moulds are created to force deformation (close to τ-axis) at fixed pre-set values of angle with respect to normal stress σ. Testing is performed on series of concrete blocks of different strengths. From the compressive side, cohesion is determined from the extrapolation of the linear Mohr–Coulomb (MC) model, as the intercept on the shear stress axis. From the tensile stress side (from the left), cohesion is obtained using the Brazilian test results: first, indirect tensile strength of material σtBT is measured, then Mohr circle diagram values are calculated and cohesion is determined as the value of shear stress τBT on the Mohr circle where normal stress (σ)t = 0. A hypothesis is made that cohesion is the common point between two tests. In the numerical part, a theory of ultimate load is applied to model Brazilian test using the angle of shear friction from the MC model. Matching experimental and numerical results confirm that the proposed procedure is applicable in numerical analysis.
Subject
Inorganic Chemistry,Condensed Matter Physics,General Materials Science,General Chemical Engineering
Reference48 articles.
1. Finite Elements Analysis in Geotechnical Engineering—Theory;Potts,1999
2. Plasticity in Reinforced Concrete;Chen,1982
3. Constitutive Relations for Concrete;Chen;ASCE J. Eng. Mech.,1975
4. A plastic-damage model for concrete
5. Continuous Damage Mechanics Revisited: Basic Concepts and Definitions
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献