Monitoring the Microbiomes of Agricultural and Food Waste Treating Biogas Plants over a One-Year Period

Author:

Agostini Sara1,Moriconi Francesco2,Zampirolli Mauro3,Padoan Diego3,Treu Laura2ORCID,Campanaro Stefano2,Favaro Lorenzo1ORCID

Affiliation:

1. Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Waste to Bioproducts-Lab, University of Padova, Agripolis, Viale dell’Università 16, 35020 Legnaro, PD, Italy

2. Department of Biology (DiBio), University of Padova, Via U. Bassi 58/b, 35121 Padova, PD, Italy

3. S.E.S.A. S.p.A., Via Comuna 5/b, 35042 Este, PD, Italy

Abstract

The knowledge of the microbiome in the anaerobic digestion (AD) is critical for stabilizing the process and optimizing the biogas yield. This work investigates the microbial ecology in four full-scale biogas plants with different feedstocks and process parameters. The three agricultural plants sharing similar feedstocks’ composition (mostly rich in proteins, cellulose and hemicellulose), have several hydrolytic and methanogenic species in common, suggesting that their substrates specifically shape the microbiomes. Particularly, the hydrolytic and likely syntrophic Defluviitoga tunisiensis was detected as the most abundant species in one reactor, representing 21.2% of the community. On the other hand, the biogas plant treating the organic fraction of municipal solid waste (OFMSW), whose composition was much higher in hash and lower in proteins, displayed a quite different microbiome with a much lower abundance of Bacteroidales sp. much higher of Clostridiaceae. Moreover, this AD was clearly influenced by COVID-19 restrictions as both substrate availability and composition suddenly changed causing the wash-out of most bacterial and methanogenic species and leading to a deep modification of the microbial structure. The abundance of Methanosarcina flavescens greatly increased up to 36.5% of the total operational taxonomic units (OTUs), suggesting a switch from the hydrogenotrophic to the acetoclastic methanogenic pathway. This is the first report on the COVID-19 impact on the AD microbiome of a full-scale anaerobic digestor. Moreover, this paper demonstrated that the feedstock composition can differentially shape both bacterial and archaeal strains of the AD process.

Funder

S.E.S.A. S.p.a.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3