A Simple Approach to Predicting the Reliability of Small Wastewater Treatment Plants

Author:

Bunce Joshua T.,Graham David W.

Abstract

The treatment performance of small wastewater treatment plants (WWTPs) is not well understood, and their ecological impact may be underestimated. Growing evidence suggests they play a critical role in ensuring sustainable wastewater management, meaning they can no longer be neglected. The aim of this study was to provide new data, understanding, and analytical approaches to improve the management of existing small WWTPs. A one-year sampling campaign was performed in the rural UK, and we found the effluent quality from twelve small versus three larger WWTPs was significantly poorer (p < 0.05) across a range of performance parameters. Specifically, mean removal rates at the small plants were 67.3 ± 20.4%, 80 ± 33.9%, and 55.5 ± 30.4% for soluble chemical oxygen demand (sCOD), total suspended solids (TSS), and NH4-N (± standard deviation), respectively, whereas equivalent rates for larger plants were 73.3 ± 17.6%, 91.7 ± 4.6%, and 92.9 ± 3.7%. A random forest classification model was found to accurately predict the likelihood of smaller WWTPs becoming unreliable. Importantly, when condensed to the three most ‘important’ predictors, the classifier retained accuracy, which may reduce the data requirements for effective WWTP management. Among the important predictors was population equivalence, suggesting the smallest WWTPs may require particularly stringent management. Growing awareness of the need for sustainable wastewater and water resources management makes this new approach both timely and widely relevant.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3