Abstract
This work focused on the application of a microchannel contactor for CO2 capture using water as absorbent, especially for the application of CO2-rich gas. The influence of operating conditions (temperature, volumetric flow rate of gas and liquid, and CO2 concentration) on the absorption efficiency and the overall liquid-side volumetric mass transfer coefficient was presented in terms of the main effects and interactions based on the factorial design of experiments. It was found that 70.9% of CO2 capture was achieved under the operating conditions as follows; temperature of 50 °C, CO2 inlet fraction of 53.7%, total gas volumetric flow rate of 150 mL min−1, and adsorbent volumetric flow rate of 1 mL min−1. Outstanding performance of CO2 capture was demonstrated with the overall liquid-side volumetric mass transfer coefficient of 0.26 s−1. Further enhancing the system by using 2.2 M of monoethanolamine in water (1:1 molar ratio of MEA-to-CO2) boosted the absorption efficiency up to 88%.
Funder
Kasetsart University Research and Development Institute
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献