Numerical Investigation of Top-Coal Migration in the First Coal-Drawing Process by an FDM–DEM Coupling Method

Author:

Huo YumingORCID,Song Xuanmin,Zhu Defu

Abstract

In Longwall Top-Coal Caving (LTCC), the shape of the loose body (LB) and top-coal boundary (TCB) formed after the first coal-drawing are the initial conditions for the common coal-drawing period. Taking the Panel 12309 in Wangjialing coal mine as the research object, the weight of the blocks of caved top coal was measured on-site, and the distribution of their equivalent diameter was calculated. By using a coupled numerical method, the “Finite difference method (FDM)–Discrete element method (DEM)” numerical model was established, and the evolutions of the drawing body (DB), LB, and TCB were obtained. The results show that, in the initial stage of first coal-drawing (0–8.09 s), the amount of DB reached its maximum of 7.18 m3 (0.89 m3/s) and then decreased to a stable value of 0.44 m3/s. The relationships between the characteristic parameters of DB, LB, and TCB and the drawing time were fitted. Taking the second derivative of each parameter with respect to time as its sensitivity (η), it was concluded that due to the large coal-drawing volume in the initial stage (0–8.09 s), the values of the above parameters increased, and the sensitivities reached 6.02 × 10−3, 3.09 × 10−3, and 6.99 × 10−3, respectively. Here, the top-coal migration rule in the first coal-drawing process was revealed from the perspectives of DB, LB, and TCB, thus providing a theoretical basis for the further study of common coal-drawing processes.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3