Liquid-Ammonia-Mediated Dyeing Process of Wool at a Lower Temperature

Author:

Shang Xianqin,Wang Qiang,Jiang Zhe,Ma Haitao,Zhang Denglu

Abstract

Liquid ammonia as a non-aqueous medium has many physical properties close to water, such as small molecular weight and strong permeability. It has been widely used for the ecological processing of cellulosic fibers to improve their luster, softness and dyeing properties. However, there are few reports on the dyeing of wool treated with liquid ammonia, especially at a lower temperature. Herein, a continuous liquid ammonia finishing machine was used to batch process wool followed by dyeing in a commonly-used wool dyeing machine. The results showed that many scale flakes and some cuticle cracking were seen on the fiber surface, and the disulfide bonds of cystine were broken down after liquid ammonia treatment, which promoted the diffusion of dyestuff into the fiber. Moreover, the uptakes and K/S value of wool dyed with Lanaset and Lanasol CE dyes were higher than the untreated wool, and the dyeing temperature could decrease to 85 °C, while the degree of fiber strength reduction merely decreased by 3–5%. Furthermore, for the reactive dyes, the dyeing temperature can reduce to 70 °C with the chemical auxiliaries Miralan LTD, while the degree of strength reduction decrease by 8–10%. Liquid ammonia treatment can be used for dyeing at a lower temperature than boiling temperature (100 °C), reduce energy consumption and reduce the degree of fiber strength reduction of wool. The method shows considerable to great value and is significant in providing a feasible approach for the industrial application of low-temperature dyeing technology.

Funder

Qiang Wang

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3