Emotion Recognition beyond Pixels: Leveraging Facial Point Landmark Meshes

Author:

Arabian Herag1ORCID,Abdulbaki Alshirbaji Tamer12ORCID,Chase J. Geoffrey3ORCID,Moeller Knut1

Affiliation:

1. Institute of Technical Medicine (ITeM), Furtwangen University, 78054 Villingen-Schwenningen, Germany

2. Innovation Center Computer Assisted Surgery (ICCAS), University of Leipzig, 04103 Leipzig, Germany

3. Department of Mechanical Engineering, University of Canterbury, Christchurch 8041, New Zealand

Abstract

Digital health apps have become a staple in daily life, promoting awareness and providing motivation for a healthier lifestyle. With an already overwhelmed healthcare system, digital therapies offer relief to both patient and physician alike. One such planned digital therapy application is the incorporation of an emotion recognition model as a tool for therapeutic interventions for people with autism spectrum disorder (ASD). Diagnoses of ASD have increased relatively rapidly in recent years. To ensure effective recognition of expressions, a system is designed to analyze and classify different emotions from facial landmarks. Facial landmarks combined with a corresponding mesh have the potential of bypassing hurdles of model robustness commonly affecting emotion recognition from images. Landmarks are extracted from facial images using the Mediapipe framework, after which a custom mesh is constructed from the detected landmarks and used as input to a graph convolution network (GCN) model for emotion classification. The GCN makes use of the relations formed from the mesh along with the special distance features extracted. A weighted loss approach is also utilized to reduce the effects of an imbalanced dataset. The model was trained and evaluated with the Aff-Wild2 database. The results yielded a 58.76% mean accuracy on the selected validation set. The proposed approach shows the potential and limitations of using GCNs for emotion recognition in real-world scenarios.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3