An Adaptive Semantic Segmentation Network for Adversarial Learning Domain Based on Low-Light Enhancement and Decoupled Generation

Author:

Wang Meng1ORCID,Zhang Zhuoran1,Liu Haipeng2ORCID

Affiliation:

1. Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

2. Yunnan Key Laboratory of Artificial Intelligence, Kunming University of Science and Technology, Kunming 650500, China

Abstract

Nighttime semantic segmentation due to issues such as low contrast, fuzzy imaging, and low-quality annotation results in significant degradation of masks. In this paper, we introduce a domain adaptive approach for nighttime semantic segmentation that overcomes the reliance on low-light image annotations to transfer the source domain model to the target domain. On the front end, a low-light image enhancement sub-network combining lightweight deep learning with mapping curve iteration is adopted to enhance nighttime foreground contrast. In the segmentation network, the body generation and edge preservation branches are implemented to generate consistent representations within the same semantic region. Additionally, a pixel weighting strategy is embedded to increase the prediction accuracy for small targets. During the training, a discriminator is implemented to distinguish features between the source and target domains, thereby guiding the segmentation network for adversarial transfer learning. The proposed approach’s effectiveness is verified through testing on Dark Zurich, Nighttime Driving, and CityScapes, including evaluations of mIoU, PSNR, and SSIM. They confirm that our approach surpasses existing baselines in segmentation scenarios.

Funder

National Natural Science Foundation of China

Yunnan Provincial Science and Technology Plan Project

Faculty of Information Engineering and Automation, Kunming University of Science and Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3