Numerical Study of a Latent Heat Storage System’s Performance as a Function of the Phase Change Material’s Thermal Conductivity

Author:

Belinson Maxim1,Groulx Dominic1ORCID

Affiliation:

1. Mechanical Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada

Abstract

The thermal conductivities of most commonly used phase change materials (PCMs) are typically fairly low (in the range of 0.2 to 0.4 W/m·K) and are an important consideration when designing latent heat energy storage systems (LHESSs). Because of that, material scientists have been asking the following question: “by how much does the thermal conductivity of a PCM needs to be increased to positively impact the design and performance of a LHESS?” The answer to this question is not straightforward as the performance of a LHESS depends on the PCM’s thermal conductivity, other PCM thermophysical properties, the type of heat exchange system geometry used, the mode of operation, and the targeted power/energy storage of the LHESS. This paper presents work related to this question through a numerical study based on a simplified 2D model of an experimental setup studied previously in the authors’ laboratory. A model created in COMSOL Multiphysics, based on conduction and accounting for the solid-liquid phase change process, was initially validated against experimental results and then used to study the impact of the PCM’s thermal conductivity (dodecanoic acid) on the discharging power of the LHESS. The results show that even increasing the thermal conductivity of the PCM by a factor of 50 only leads to a maximum instantaneous power increase by a factor of 2 or 3 depending on the LHESS configurations.

Funder

Natural Science and Engineering Research Council

Publisher

MDPI AG

Reference38 articles.

1. (2024). Renewables 2023—Analysis and Forecast to 2028, International Energy Agency (IEA).

2. Letcher, T.M. (2016). Storing Energy with Special Reference to Renewable Energy Sources, Elsevier.

3. Cabeza, L.F. (2021). Advances in Thermal Energy Storage Systems: Methods and Applications, Elsevier. [2nd ed.].

4. Cabeza, L. (2021). Advances in Thermal Energy Storage Systems, Elsevier. [2nd ed.].

5. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS);Agyenim;Renew. Sustain. Energy Rev.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3