A Novel Method Combining U-Net with LSTM for Three-Dimensional Soil Pore Segmentation Based on Computed Tomography Images

Author:

Liu Lei123,Han Qiaoling123,Zhao Yue123,Zhao Yandong123

Affiliation:

1. School of Technology, Beijing Forestry University, Beijing 100083, China

2. Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Municipal Education Commission, Beijing 100083, China

3. Key Laboratory of State Forestry Administration for Forestry Equipment and Automation, Beijing 100083, China

Abstract

The non-destructive study of soil micromorphology via computed tomography (CT) imaging has yielded significant insights into the three-dimensional configuration of soil pores. Precise pore analysis is contingent on the accurate transformation of CT images into binary image representations. Notably, segmentation of 2D CT images frequently harbors inaccuracies. This paper introduces a novel three-dimensional pore segmentation method, BDULSTM, which integrates U-Net with convolutional long short-term memory (CLSTM) networks to harness sequence data from CT images and enhance the precision of pore segmentation. The BDULSTM method employs an encoder–decoder framework to holistically extract image features, utilizing skip connections to further refine the segmentation accuracy of soil structure. Specifically, the CLSTM component, critical for analyzing sequential information in soil CT images, is strategically positioned at the juncture of the encoder and decoder within the U-shaped network architecture. The validation of our method confirms its efficacy in advancing the accuracy of soil pore segmentation beyond that of previous deep learning techniques, such as U-Net and CLSTM independently. Indeed, BDULSTM exhibits superior segmentation capabilities across a diverse array of soil conditions. In summary, BDULSTM represents a state-of-the-art artificial intelligence technology for the 3D segmentation of soil pores and offers a promising tool for analyzing pore structure and soil quality.

Funder

National Natural Science Foundation of China

National Natural Science Youth Foundation of China

Special Fund for Beijing Common Construction Project

National Natural

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3