Distribution System State Estimation Based on Enhanced Kernel Ridge Regression and Ensemble Empirical Mode Decomposition

Author:

Chu Xiaomeng1ORCID,Wang Jiangjun1

Affiliation:

1. College of Mechanical Engineering and Automation, Liaoning University of Technology, Jinzhou 121001, China

Abstract

In the case of strong non-Gaussian noise in the measurement information of the distribution network, the strong non-Gaussian noise significantly interferes with the filtering accuracy of the state estimation model based on deep learning. To address this issue, this paper proposes an enhanced kernel ridge regression state estimation method based on ensemble empirical mode decomposition. Initially, ensemble empirical mode decomposition is employed to eliminate most of the noise data in the measurement information, ensuring the reliability of the data for subsequent filtering. Subsequently, the enhanced kernel ridge regression state estimation model is constructed to establish the mapping relationship between the measured data and the estimation residuals. By inputting the measured data, both estimation results and estimation residuals can be obtained. Finally, numerical simulations conducted on the standard IEEE-33 node system and a 78-node system in a specific city demonstrate that the proposed method exhibits high accuracy and robustness in the presence of strong non-Gaussian noise interference.

Funder

Science Research Funding Project of the Education Department of Liaoning Province

Doctoral Research Start-up Fund Project of Liaoning Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3