The Adsorption of Methylene Blue on Eco-Friendly Reduced Graphene Oxide

Author:

Arias Arias FabianORCID,Guevara MarcoORCID,Tene Talia,Angamarca Paola,Molina RaulORCID,Valarezo Andrea,Salguero Orlando,Vacacela Gomez CristianORCID,Arias Melvin,Caputi Lorenzo S.ORCID

Abstract

Recently, green-prepared oxidized graphenes have attracted huge interest in water purification and wastewater treatment. Herein, reduced graphene oxide (rGO) was prepared by a scalable and eco-friendly method, and its potential use for the removal of methylene blue (MB) from water systems, was explored. The present work includes the green protocol to produce rGO and respective spectroscopical and morphological characterizations, as well as several kinetics, isotherms, and thermodynamic analyses to successfully demonstrate the adsorption of MB. The pseudo-second-order model was appropriated to describe the adsorption kinetics of MB onto rGO, suggesting an equilibrium time of 30 min. Otherwise, the Langmuir model was more suitable to describe the adsorption isotherms, indicating a maximum adsorption capacity of 121.95 mg g−1 at 298 K. In addition, kinetics and thermodynamic analyses demonstrated that the adsorption of MB onto rGO can be treated as a mixed physisorption–chemisorption process described by H-bonding, electrostatic, and π − π interactions. These results show the potential of green-prepared rGO to remove cationic dyes from wastewater systems.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3