Earth Rotation Parameters Estimation Using GPS and SLR Measurements to Multiple LEO Satellites

Author:

Li Xingxing,Zhang Hongmin,Zhang Keke,Yuan Yongqiang,Zhang Wei,Qin Yujie

Abstract

Earth rotation parameters (ERP) are one of the key parameters in realization of the International Terrestrial Reference Frames (ITRF). At present, the International Laser Ranging Service (ILRS) generates the satellite laser ranging (SLR)-based ERP products only using SLR observations to Laser Geodynamics Satellite (LAGEOS) and Etalon satellites. Apart from these geodetic satellites, many low Earth orbit (LEO) satellites of Earth observation missions are also equipped with laser retroreflector arrays, and produce a large number of SLR observations, which are only used for orbit validation. In this study, we focus on the contribution of multiple LEO satellites to ERP estimation. The SLR and Global Positioning System (GPS) observations of the current seven LEO satellites (Swarm-A/B/C, Gravity Recovery and Climate Experiment (GRACE)-C/D, and Sentinel-3A/B) are used. Several schemes are designed to investigate the impact of LEO orbit improvement, the ERP quality of the single-LEO solutions, and the contribution of multiple LEO combinations. We find that ERP estimation using an ambiguity-fixed orbit can attain a better result than that using ambiguity-float orbit. The introduction of an ambiguity-fixed orbit contributes to an accuracy improvement of 0.5%, 1.1% and 15% for X pole, Y pole and station coordinates, respectively. In the multiple LEO satellite solutions, the quality of ERP and station coordinates can be improved gradually with the increase in the involved LEO satellites. The accuracy of X pole, Y pole and length-of-day (LOD) is improved by 57.5%, 57.6% and 43.8%, respectively, when the LEO number increases from three to seven. Moreover, the combination of multiple LEO satellites is able to weaken the orbit-related signal existing in the single-LEO solution. We also investigate the combination of LEO satellites and LAGEOS satellites in the ERP estimation. Compared to the LAGEOS solution, the combination leads to an accuracy improvement of 0.6445 ms, 0.6288 ms and 0.0276 ms for X pole, Y pole and LOD, respectively. In addition, we explore the feasibility of a one-step method, in which ERP and the orbit parameters are jointly determined, based on SLR and GPS observations, and present a detailed comparison between the one-step solution and two-step solution.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference48 articles.

1. Springer Handbook of Global Navigation Satellite Systems;Teunissen,2017

2. Variations in the orientation of the earth, In Contributions of Space Geodesy to Geodynamics: Earth Dynamics;Smith,1993

3. Achievements of the Earth orientation parameters prediction comparison campaign

4. Impact of Celestial Datum Definition on EOP Estimation and CRF Orientation in the Global VLBI Session IYA09;Raposopulido,2010

5. Earth rotation variations–long period-3.09;Gross,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3