Abstract
The Riemann extension, introduced by E. K. Patterson and A. G. Walker, is a semi-Riemannian metric with a neutral signature on the cotangent bundle T∗M of a smooth manifold M, induced by a symmetric linear connection ∇ on M. In this paper we deal with a natural Riemann extension g¯, which is a generalization (due to M. Sekizawa and O. Kowalski) of the Riemann extension. We construct an almost complex structure J¯ on the cotangent bundle T∗M of an almost complex manifold (M,J,∇) with a symmetric linear connection ∇ such that (T∗M,J¯,g¯) is an almost complex manifold, where the natural Riemann extension g¯ is a Norden metric. We obtain necessary and sufficient conditions for (T∗M,J¯,g¯) to belong to the main classes of the Ganchev–Borisov classification of the almost complex manifolds with Norden metric. We also examine the cases when the base manifold is an almost complex manifold with Norden metric or it is a complex manifold (M,J,∇′) endowed with an almost complex connection ∇′ (∇′J=0). We investigate the harmonicity with respect to g¯ of the almost complex structure J¯, according to the type of the base manifold. Moreover, we define an almost hypercomplex structure (J¯1,J¯2,J¯3) on the cotangent bundle T∗M4n of an almost hypercomplex manifold (M4n,J1,J2,J3,∇) with a symmetric linear connection ∇. The natural Riemann extension g¯ is a Hermitian metric with respect to J¯1 and a Norden metric with respect to J¯2 and J¯3.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference28 articles.
1. On a class of four-dimensional A-spaces;Norden;Russian Math.,1960
2. Generalized B-manifolds;Gribachev;C. R. Acad. Bulg. Sci.,1985
3. Note on the almost complex manifolds with a Norden metric;Canchev;C. R. Acad. Bulg. Sci.,1986
4. On an almost complex structure with Norden metric on the tangent bundle of an almost Hermitian manifold;Bonome;Bull. Math. Soc. Sci. Math. Roum.,1989
5. Anti-Kählerian manifolds
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献