A Priori Determining the Performance of the Customized Naïve Associative Classifier for Business Data Classification Based on Data Complexity Measures

Author:

Tusell-Rey Claudia C.,Camacho-Nieto OscarORCID,Yáñez-Márquez Cornelio,Villuendas-Rey YennyORCID,Tejeida-Padilla RicardoORCID,Benguría Carmen F. Rey

Abstract

In the supervised classification area, the algorithm selection problem (ASP) refers to determining the a priori performance of a given classifier in some specific problem, as well as the finding of which is the most suitable classifier for some tasks. Recently, this topic has attracted the attention of international research groups because a very promising vein of research has emerged: the application of some measures of data complexity in the pattern classification algorithms. This paper aims to analyze the response of the Customized Naïve Associative Classifier (CNAC) in data taken from the business area when some measures of data complexity are introduced. To perform this analysis, we used classification datasets from real-world related to business, 22 in total; then, we computed the value of nine measures of data complexity to compare the performance of the CNAC against other algorithms of the state of the art. A very important aspect of performing this task is the creation of an artificial dataset for meta-learning purposes, in which we considered the performance of CNAC, and then we trained a decision tree as meta learner. As shown, the CNAC classifier obtained the best results for 10 out of 22 datasets of the experimental study.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SMOTE and Hyperparameter Optimization: A Dual Machine Learning Strategy for Enhancing Coupon Recommendation in Vehicular Contexts;2023 3rd International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON);2023-12-29

2. Investigating the Performance of Data Complexity & Instance Hardness Measures as A Meta-Feature in Overlapping Classes Problem;Proceedings of the 2023 7th International Conference on Cloud and Big Data Computing;2023-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3