Abstract
In this study, a dimensionally nonlinear evolution equation, which is the integrable shallow water wave-like equation, is investigated utilizing the Hirota bilinear approach. Lump solutions are achieved by its bilinear form and are essential solutions to various kind of nonlinear equations. It has not yet been explored due to its vital physical significant in various field of nonlinear science. In order to establish some more interaction solutions with some novel physical features, we establish collision aspects between lumps and other solutions by using trigonometric, hyperbolic, and exponential functions. The obtained novel types of results for the governing equation includes lump-periodic, two wave, and breather wave solutions. Meanwhile, the figures for these results are graphed. The propagation features of the derived results are depicted. The results reveal that the appropriate physical quantities and attributes of nonlinear waves are related to the parameter values.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献