Cross-Subject Classification of Effectiveness in Performing Cognitive Tasks Using Resting-State EEG

Author:

Steiner Helen1ORCID,Mikheev Ilya12,Martynova Olga1ORCID

Affiliation:

1. Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia

2. Department of Psychology, HSE University, 101000 Moscow, Russia

Abstract

A high level of mathematical education is often associated with high effectiveness in solving cognitive problems and professional success. It is known that cognitive processes are accompanied by specific bioelectric activity in the brain and success in mathematical education as a behavioral phenotype is also reflected in EEG both during mental activity and at rest. This study tested the potential to distinguish volunteers with an advanced level of education in mathematics (AM) from individuals with a basic level of education in mathematics (BM) based on the frequency parameters of the resting-state electroencephalogram (EEG) recorded before the start of cognitive tasks. Further, the volunteers were divided into two groups, highly successful and moderately successful, according to their task-solving performance. The Light Gradient Boosting Machine learning algorithm was used for cross-subject classification based on the power spectral density of seven EEG frequency bands. It most accurately recognized and differentiated EEG of highly successful from highly successful BM subjects. The results indicate that success in solving tasks in combination with a high level of education in mathematics can be reflected in or predicted by the specific rhythmic activity of the brain at rest.

Funder

State Assignment of Ministry of Science and Higher Education of the Russian Federation at the Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3