Wart-Treatment Efficacy Prediction Using a CMA-ES-Based Dendritic Neuron Model

Author:

Song Shuangbao1ORCID,Zhang Botao1,Chen Xingqian2ORCID,Xu Qiang1,Qu Jia1ORCID

Affiliation:

1. School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou 213164, China

2. School of Computer Engineering, Jiangsu University of Technology, Changzhou 213001, China

Abstract

Warts are a prevalent condition worldwide, affecting approximately 10% of the global population. In this study, a machine learning method based on a dendritic neuron model is proposed for wart-treatment efficacy prediction. To prevent premature convergence and improve the interpretability of the model training process, an effective heuristic algorithm, i.e., the covariance matrix adaptation evolution strategy (CMA-ES), is incorporated as the training method of the dendritic neuron model. Two common datasets of wart-treatment efficacy, i.e., the cryotherapy dataset and the immunotherapy dataset, are used to verify the effectiveness of the proposed method. The proposed CMA-ES-based dendritic neuron model achieves promising results, with average classification accuracies of 0.9012 and 0.8654 on the two datasets, respectively. The experimental results indicate that the proposed method achieves better or more competitive prediction results than six common machine learning models. In addition, the trained dendritic neuron model can be simplified using a dendritic pruning mechanism. Finally, an effective wart-treatment efficacy prediction method based on a dendritic neuron model, which can provide decision support for physicians, is proposed in this paper.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3