Uncertainty Quantification of Ride Comfort Based on gPC Framework for a Fully Coupled Human–Vehicle Model

Author:

Song Byoung-Gyu1,Bae Jong-Jin2,Kang Namcheol1

Affiliation:

1. School of Mechanical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea

2. Korea Aerospace Research Institute, KSLV-II R&D Directorate, Daejeon 34133, Republic of Korea

Abstract

We investigated the stochastic response of a person sitting in a driving vehicle to quantify the impact of an uncertain parameter important in controlling defect reduction in terms of ride comfort. Using CarSim software and MATLAB/Simulink, we developed a fully coupled model that simulates a driving vehicle combined with an analytical nonlinear human model. Ride comfort was evaluated as a ride index considering the frequency weights defined in BS 6841. Additionally, to investigate the uncertainty of the ride index, a framework for calculating the ride index was proposed using the generalized polynomial (gPC) method. Further, sensitivity analysis of the ride index was performed for each uncertainty parameter, such as stiffness and damping. The results obtained through the gPC method were in good agreement with those obtained via Monte Carlo simulation (MCS) and were excellent in terms of computation time without a loss of numerical accuracy. Through in-depth investigation, we found that the stochastic distribution of the ride index varies differently for each uncertain parameter in the human model. By comparing linear and nonlinear human models, we also found that the nonlinearity of the human model is an important concern in the stochastic estimation of ride comfort.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3