Study on Smoke Leakage Performance of Suspended Ceiling System

Author:

Chou Tien-Lun,Tang Chieh-Hsin,Chuang Ying-Ji,Lin Ching-Yuan

Abstract

The key focus of the research is on the smoke leakage rate from suspended ceiling system, referencing CNS 15038 norm and its experimental principles to build a set of monitoring equipment for measuring air leakage rate and the provision of detailed assembly details for users’ reference. Through the real-size test chamber, the smoke insulation performance of the ceiling is studied. Targeting the different ceiling materials, ceiling panels dimensions, and construction methods, in keeping with the scientific principles of fluid mechanics, a total of 405 tests are carried out to come up with the means of appraising the leakage rate of ceiling panels of different sizes and materials. The study found that with the ceiling panel material quality being different, even if the ceiling size is the same, different leakage rates could occur. When the material quality of the ceiling panels is the same and the ceiling size is different, it is not that the larger the size of the panel, the greater the leakage rate, but the smallest leakage rate is caused by the largest panel and this is a very special phenomenon. This study also presents a leakage rate assessment table for entire ceiling panels, which will provide future calculations of the smoke leakage rate of the non-flame room, which can be extrapolated to assess the time of smoke decline and conducive for evacuation design. The apparatus has been proven to have proper leakage rate detection capability for the ceiling panels. In the future, the design principle of the extended system can be applied to the inspection and testing of smoke insulation capability of other fire prevention products. In turn, it can be estimated when the smoke has fallen to facilitate escape design.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference21 articles.

1. Physiological effects of smoke: Managing escape;Clarke;ASHRAE J.,1997

2. Smoke Control, SFPE Handbook of Fire Protection Engineering;Klote,1995

3. Method of Test for Evaluating Smoke Control Performance of Doors,2009

4. Fire Test-Evaluation of Performance of Smoke Control Door Assemblies—Part 1: Ambient Temperature Test,2007

5. Fire Test-Smoke Control Door and Shutter Assemblies—Part 2: Commentary on Test Method and Test Data Application,2006

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3