Mechanical Properties of Hardened 3D Printed Concretes and Mortars—Development of a Consistent Experimental Characterization Strategy

Author:

Meurer Maximilian,Classen MartinORCID

Abstract

Today, it is already foreseeable that additive manufacturing of mortar and concrete has groundbreaking potential and will revolutionize or at least fundamentally change the way we build. In recent years, 3D concrete printing (3DCP) with extrusion-based deposition methods has been pushed forward by a growing research community. Albeit being regarded one of the most promising innovations in construction industry, a consistent characterization methodology for assessing the constitutive behavior of 3D printed, hardened cementitious materials is missing, so far, which hinders its widespread use in engineering practice. The major objective of this paper is to fill this gap by developing a new experimental framework that can thoroughly describe the mechanical properties of 3D printed cementitious materials. Based on both a review of state-of-the-art test setups and a comprehensive experimental campaign, the present paper proposes a set of easy-to-use experimental methods that allow us to assess flexural, tensile, shear and compressive strength as well as fracture energy of 3D printed concretes and mortars in a reliable and reproducible manner. The experimental results revealed anisotropic material behavior for flexural, tensile, shear and compressive loading. Furthermore, they confirm that interval time (time gap between deposition of subsequent layers) has a crucial effect on investigated material properties leading to a severe reduction in strength and fracture energy for longer interval times.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3