Tribological Behavior of Phenolic Resin-Based Friction Composites Filled with Graphite

Author:

Zhang EnORCID,Gao Fei,Fu Rong,Lu Yunzhuo,Han Xiaoming,Su Linlin

Abstract

In this paper, the influence of graphite (Gr) on the dry sliding tribological properties of phenolic resin (PF) composites was studied under different sliding speeds of 3.1–47.1 m/s. The wear mechanism was investigated by the observation of the morphology of the transfer layer during the dry sliding process. It was found that the addition of Gr could decrease the friction coefficient and wear rate effectively, and the friction coefficient and wear rate decreased with the increase of Gr content in the range of 10–30 vol.%. The dominant wear mechanisms of PF-based friction composites changed from adhesive wear to fatigue wear (in the form of peeling-off) in the high sliding speed condition after the addition of Gr. The addition of Gr effectively reduced the sensitivity of PF-based friction materials to sliding speeds, and thus enhanced the stability of the friction coefficient. When the content of Gr was above 20 vol.%, the stability of the friction coefficient was relatively steady.

Funder

the National Key Research and Development Plan

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3